The shortest proof for every theorem

Suppose we want to show that there is a number \(n\) such that no upper bound on the busy beaver number \(\Sigma(n)\) is provable from, say, the axioms of ZFC. One possible proof is as follows: Assume that no such \(n\) exists. That is, assume that for every \(n\), there is a proof in first-order logic that uses only the axioms of ZFC and derives a sentence \(\Sigma(n) \leq m\) for some \(m\). Then we could compute an upper bound for \(\Sigma(n)\) by exhaustively searching all of the possible valid ZFC proofs until we found one that deduced a theorem of the form \(\Sigma(n) \leq m\); by assumption, we must eventually find such a proof. But we know that we cannot compute an upper bound on \(\Sigma(n)\) for arbitrary \(n\); thus, we have derived a contradiction, and the original assumption must be false.

Enumerating proofs until you find one with the desired properties is one of those grand CS traditions that, like calling an \(O(n^{12})\) algorithm “efficient” while dismissing an \(O(1.001^n)\) algorithm as “intractable”, is handy for theoretical purposes but has essentially no bearing on the real world whatsoever. After all, no one would really write a program that loops through all possible proofs and tests each one.

Continue reading The shortest proof for every theorem